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Abstract

Accurate visual tracking is a challenging issue in computer vision. Correlation filter (CF)

based methods are sought in visual tracking based on their efficiency and high performance.

Nonetheless, CF-based trackers are sensitive to partial occlusion, which may reduce their

overall performance and even lead to failure in tracking challenge. In this paper, we pre-

sented a very powerful tracker based on the kernelized correlation filter tracker (KCF).

Firstly, we employ an intelligent multi-part tracking algorithm to improve the overall capability

of correlation filter based tracker, especially in partial-occlusion challenges. Secondly, to

cope with the problem of scale variation, we employ an effective scale adaptive scheme,

which divided the target into four patches and computed the scale factor by finding the maxi-

mum response position of each patch via kernelized correlation filter. With this method, the

scale computation was transformed into locating the centers of the patches. Thirdly,

because the small deviation of the central function value will bring the problem of location

ambiguity. To solve this problem, the new Gaussian kernel functions are introduced in this

paper. Experiments on the default 51 video sequences in Visual Tracker Benchmark dem-

onstrate that our proposed tracker provides significant improvement compared with the

state-of-art trackers.

1. Introduction

Visual object tracking is a crucial research problem in computer vision and has many applica-

tions including video surveillance, traffic monitoring, robotics and human computer interface.

In the past decade, great improvement has been made by some visual tracking algorithms [1,

2, 3, 4, 5, 6], but visual tracking is still considered as a big challenge in some scenarios such as

illumination variation, scale variation, occlusion, deformation and background clutters, etc.

Recently, correlation filter based methods are sought in visual tracking because of their effi-

ciency and high performance. Correlation filters usually generate correlation peaks for each

interested patch in one frame while producing low responses to background, which are often

used as detectors of expected model. Kernelized Correlation Filter (KCF) tracking has the

highest speed while balancing the tracking performance. For a given image, the KCF tracker

achieves target tracking by learning the target’s appearance by the kernel least squares classi-

fier. However, the KCF tracker does not have the ability to handle the scale problem. Danelljan
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et al.[7] relieves the scaling issue using feature pyramid and 3-dimensional correlation filter.

Yang Li et al.[8] applies a scaling pool to handle scale variations. The above methods have

largely solved the scaling problem. Moreover, occlusion is also a tricky problem for these cor-

relation filter based trackers. In general, multi-part tracking scheme can be helpful to gain

robustness against partial occlusions. In this respect, Akin et al.[9]proposes a tracker depends

on coupled interactions between a global tracker and several part trackers. Jeong et al.[10]

applies a naive multi-block scheme based on DSST[7]. These methods can solve partial occlu-

sion to a large extent.

However, negative effects for comprehensive performance of tracker are generated by using

sub-part trackers frequently, since sub-part trackers will process part of the target as back-

ground during training and detecting. To avoid accumulating negative effects, sub-trackers

should only be employed in frames which object is occluded or deformed.

In this paper, we employ an effective spatial distribution to divide target into two sub-parts. To

avoid applying sub-trackers frequently, we endue sub-trackers a reliability weight based on the

fluctuation of correlation response from globe tracker so that sub-trackers will be chosen only

when target is occluded or deformed. We assign different learning rates to different trackers based

on the ratio of response values. Moreover, robust scale calculation is a challenging problem in

visual tracking. Most existing trackers fail to handle large scale variations in complex videos. To

address this issue, this paper proposed a robust and efficient scale-adaptive tracker in tracking-by-

detection framework, which divided the target into four patches and computed the scale factor by

finding the maximum response position of each patch via kernelized correlation filter. With this

method, the scale computation was transformed into locating the centers of the patches. Because

the small deviation of the central function value will bring the problem of location ambiguity. To

solve this problem, the new Gaussian kernel functions are introduced in this paper.

2. Related works

The KCF tracker [11] achieves very excellent results and high-speed performance on Visual

Tracker Benchmark [12], despite the ideal and implementation of KCF tracker are very simple.

The KCF tracker achieves excellent results and high-speed performance on Visual Tracker

Benchmark [10], despite the idea and implementation of KCF tracker are very simple. KCF

tracker collects positive and negative samples around the target using the structure of the cir-

culant matrix, to improve the discriminative capability of the track-by-detector tracker. The

circulant matrix can be diagonalized with the Discrete Fourier Transform (DFT), enabling fast

dot-product instead of expensive Matrix algebra.

The goal of KCF tracker is to find a function that minimizes the squared error over data

matrix X and their regression target y,

min
w
kXw � yk2

þ lkwk2
ð1Þ

where the square matrix X contains all circulant shifts of the base sample x, the regression tar-

get y is Gaussian-shaped, and the λ is a regularization parameter to ensure the generalization

performance of the classifier, Eq (1) has the closed-form solution.

w ¼ ðXTXþ lIÞ� 1XTy ð2Þ

The circulant matrix X has some intriguing properties [16] [11], and the most useful one is

that the circulant matrix can be diagonalized by the Discrete Fourier Transform (DFT) as

below:

X ¼ FHdiagðx̂ÞF ð3Þ
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where F is the DFT matrix, and FH is the Hermitian transpose. x̂ denotes the DFT of x,

x̂ ¼ FðxÞ ¼
ffiffiffi
n
p

Fx:
Applying Eq (3) into the solution of linear regression (Eq (2)), we have the solution as

below:

ŵ ¼
x̂
J

ŷ
x̂�
J

x̂ þ l
ð4Þ

where x̂� is the a complex-conjugate of x̂. The symbol
J

and the fraction denote element-wise

product and division respectively.

For detecting the new location of target in the next frame, we can compute the response f(z)
for all candidate patches z, and diagonalize f(z) to obtain as below:

f̂ ðzÞ ¼ ŵ
K

ẑ ð5Þ

The candidate patch with the maximum response is considered as the new location of

target.

3. The proposed tracker

In this section, we describe our tracker based on the kernelized correlation filter (KCF) [11].

Firstly, we described the Multi-part tracking tracker, and then the adaptive scale calculation

method will be introduced. The selection of Gaussian function is discussed. Moreover, we pre-

sented our powerful Multi-part tracking algorithm to improve the correlation filter based

trackers.

3.1. Multi-part tracking

In visual tracking tasks, partial occlusion is one of the major challenges limiting performance

of tracker. Simply, multi-part scheme [13] [14] splits the target into multi-parts and track

them independently. When target is partially occluded or deformed, tracker can still locate tar-

get rely on the effective sub-part. The high frame rate of KCF also allows multi-part scheme to

be applied to real-time tasks. However, the performance of the sub-part tracker does not per-

form as well as the global tracker in most non-occluded frames, even though sub-part tracker

has a higher response value sometimes, since sub-part trackers will process part of the target as

background during training and detecting. Therefore, the best method is to use the global

tracker when the object is non-occluded, and use a sub-tracker when occlusion occurs.

In our work, our goal is to develop a multi-part tracker that sub-part trackers and global

tracker will take effect in their efficient frames respectively. We employ effective spatial distri-

butions to divide target into two sub-parts, one for the horizontally and one for the vertically

aligned object based on the ratio of the height and width of the target. As illustrated in Fig 1.

The key in our method is how to select the optimal tracker from both globe and sub-part

trackers for different frames, as illustrated in Fig 2. If we simply choose the tracker that has the

maximum response, sub-part trackers will be frequently applied to non-occluded frames. For-

tunately, when the target is occluded or deformed, the response value of globe tracker will fluc-

tuate significantly relative to frames which the target is non-occluded. Based on above fact, we

propose a reliability weight w for sub-part trackers. w endues multi-part tracker the ability to

identify whether the object is occluded or not, and multi-part tracker can select the optimal

tracker for different frame itself.

Firstly, we introduce a fluctuation value parameter of global tracker Δt.

Dt ¼ Rg
t � Rg

L; t > 1 ð6Þ
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for the 1-th frame of tracking, Δ1 is set as 0, the Rg
t is the globe tracker’s response value of cur-

rent frame and Rg
L is the response value of the global tracker which was selected as the optimal

tracker for the last time, they can be obtained by Eq (5). The parameter indicates the change of

response value after the object is occluded or deformed. The smaller the parameter, the greater

the occluded area of the object, that means the globe tracker’s reliability is reduced.

To avoid sub-part trackers are selected as the optimal tracker in non-occluded frames, we

assign a reliability weight to response value of sub-part trackers. The reliability weight at the t-
th frame is defined as:

wt ¼
1þ e� Z

1þ eyDt
ð7Þ

where η and θ are the reliability and sensitivity parameter respectively, in our experiments, η
sets as 0.4 and θ = 1. The reliability weight reduces the probability that the sub- tracker is

selected as the optimal one unless the weight is less than -0.4, and it imply the object is likely to

be occluded that the reliability weight less than -0.4.

Multi-part tracker can choose the optimal tracker using Eq (8), and Rsi
t is the response value

of i-th sub-tracker.

R� ¼ argmaxðR1
t ;R

2
t ;R

3
t Þ;

R1
t ¼ Rg

t ; R2
t ¼ wtRs1

t ; R3
t ¼ wtRs2

t

ð8Þ

If the optimal tracker is globe tracker, the new position can be obtained directly. If one of

sub trackers is selected as optimal tracker, the new position can get by shifting in correspon-

dence to the previous center coordinates.

Fig 1. Two spatial distributions based on the ratio of the height and width of the target. The red rectangle

represents globe-part, the green and blue rectangles represent two sub-part. (a) horizontally aligned object from car4;

(b) vertically aligned object from single1;.

https://doi.org/10.1371/journal.pone.0231087.g001

Fig 2. Different optimal tracker for one target in different frame, in (a) the globe tracker is better, in (b) the green sub-

tracker should be selected.

https://doi.org/10.1371/journal.pone.0231087.g002
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3.2. Subsection scale calculation method

Assume the location of the target center in the t−1 frame is pt−1, the target scale is wt−1×ht−1. In

the t−1 frame,take pt−1 as the center,the image block zt−1 with size βwt−1×βht−1 is selected to

update the appearance template x̂ and coefficient α̂,

x̂t� 1 ¼ ð1 � ZÞx̂t� 2 þ Zzt� 1

ât� 1 ¼ ð1 � ZÞât� 2 þ Zat� 1

ð9Þ

(

where β is expansion coefficient, η is learning rate. Coordinate system is constructed with pt−1

as the origin. The image of wt−1×ht−1 is divided into four equal sub-blocks, and the center of

each block is (w1(t−1)×h1(t−1)), (w2(t−1)×h2(t−1)), (w3(t−1)×h3(t−1)) and (w4(t−1)×h4(t−1)),

Train the respective linear classifiers on the four sub-blocks, the training class of the classifier

(1), the update of the template and the coefficients (9).

In the t-frame, the target scale calculation process is, first of all, take pt−1 as the center,

selected the image block zt0 with size βwt−1×βht−1. Calculate the maximum response position

pt is the current frame target center location. Then take pt as the center, selected the image

block zt1 with size wt−1×ht−1. Coordinate system is constructed with pt as the origin. Two axes

divide image block wt−1×ht−1 into four sub-blocks. Using the classifier trained on the four sub-

blocks to find the position with the largest response on the sub-block (w1(t)×h1(t)),
(w2(t)×h2(t)), (w3(t)×h3(t)) and (w4(t)×h4(t)), then, the scaling factor γt can be given by the rel-

ative change of the center position in w and h dimensions[15]

gt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4

j¼1
jwjðtÞj

P4

i¼1
jwiðt � 1Þj

 !

:

P4

j¼1
jhjðtÞj

P4

i¼1
jhiðt � 1Þj

 !v
u
u
t ð10Þ

After calculating the scaling factor γt, in order to reduce the influence of noise on scale cal-

culation and increase its robustness, moving average (MA) is used to calculate the target scale.

Assuming that the moving average parameter is T, the moving average of the expansion coeffi-

cient is

rt ¼
1

T
PT� 1

i¼0
gt� i ð11Þ

In particular, when T = 1 in Eq (11), the moving average degenerates to ρt = γt.
Then, the target scale in the t−th frame is

wt ¼ rt� iwt� 1 ¼ w1

Qt
i¼2
ri

ht ¼ rtht� 1 ¼ h1

Qt
i¼2
ri

ð12Þ

(

Where w1 and h1 were initial frame target sacle.

After calculating the target scale in the t−th frame, take pt as the center, selected the image

block zt with size βwt×βht to update the appearance template x̂ and coefficient α̂. At the same

time, the wt×ht target area is divided into four sub-blocks, and the coefficients of the sub-block

center, the sub-block template and the classifier on the sub-block are updated.

3.3. Selection of Gaussian kernel function

In the tracking algorithm, the objective function generally uses a Gaussian function,

yðm; nÞ ¼ expð� jp � p0j
2
=2s2Þ ð13Þ
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Where σ is constant, p = (m,n), p0 = (m0,n0) is the target center position.

jp � p0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm � m0Þ
2
þ ðn � n0Þ

2

q

ð14Þ

Since the partial derivative of the Gaussian function at p0 = (m0,n0) is zero, which is

@y
@m
jp¼p0
¼
@y
@n
jp¼p0
¼ 0 ð15Þ

The above equation shows that the deviation of the function value of the objective function

near p0 = (m0,n0) is small, and the target position in the tracking process is determined by the

maximum response position. Therefore, the small deviation of the central function value will

bring the problem of location ambiguity. To solve this problem, the following Gaussian kernel

functions are introduced in this paper.

ŷðm; nÞ ¼ expð� jp � p0j=2yÞ ð16Þ

Where θ>0 is constant. The partial derivative of the function shown in Eq (16)

@ŷ
@m
¼ �

m � m0

2yjp � p0j
expð� jp � p0j=2yÞ

@ŷ
@n
¼ �

n � n0

2yjp � p0j
expð� jp � p0j=2yÞ

ð17Þ

8
>>><

>>>:

In particular, the partial derivative at p0 = (m0,n0),

@ŷ
@m
jm¼mþ

0
;n¼n0
¼ �

1

2y

@ŷ
@n
jn¼nþ

0
;m¼m0

¼ �
1

2y

@ŷ
@m
jm¼m�

0
;n¼n0
¼

1

2y

@ŷ
@n
jn¼n�

0
;m¼m0

¼
1

2y

ð18Þ

8
>>><

>>>:

8
>>><

>>>:

Where m ¼ mþ
0

, n ¼ nþ
0

right partial derivative, m ¼ m�
0

, n ¼ n�
0

left partial derivative.

Eq (18) shows that the left and right partial derivatives of the Gaussian kernel function at p0

= (m0,n0) are not equal, so the partial derivatives at p0 = (m0,n0) do not exist, but both the left

and right partial derivatives exist and are constant, which means that the deviation of the target

function near p0 = (m0,n0) is large, which is beneficial to the accurate positioning of the target

center during the tracking process.

4. Experiments

In this section, we first introduce the experimental setup and methodology. Moreover, to eval-

uate the performance of the proposed Multi-part and Scale Adaptive Tracker (MSAT), we

implemented our method to compare with s correlation filter based trackers and other state-

of-art trackers on the default 51 video sequence in Visual Tracker Benchmark [12].

4.1. Experimental setup and methodology

The proposed tracker is implemented in MATLAB R2014a version. All the experiments are

conducted on an Intel Xeon(R) E3-1226 V3 CPU (3.30 GHz) PC with 16GB RAM. The HoG

cell size is 4×4 and the number of bin is 9. The padding windows is 2.5 times of target object,

and learning rate parameter γ is set to 0.015. The σ used in Gaussian kernel is set to 0.5.

We select two quantitative evaluation criteria. The first one is mean overlap precision (OP),

OP calculates the percentage of frames in sequences where the intersection-over-union (IOU)
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overlap exceeds a given threshold of 0.5. The second criteria is the area under curve (AUC),

which is computed from the average of the success rates corresponding to the sampled overlap

thresholds from 0 to 1.

We have tested the performance of the proposed method with different values of the reli-

ability parameter η, as shown in Fig 3, the η is set from 0.1 to 0.7. The smaller the η, the higher

the probability that sub-tracker is selected as the optimal tracker. Frequently choosing sub-

tracker will reduce performance of the proposed method. On the contrary, assigning η too

large value is equivalent to using only the global tracker.

To evaluate the comprehensive performance of the proposed approach, we first run seven

Correlation Filter-based trackers, and then make comparison with other State-of-art trackers

on the default 51 video sequences in Visual Tracker Benchmark [12].

4.2. Comparison to correlation filter based trackers

To indicate the performance improvements of our approach with multi-part and scale adap-

tive scheme, we compare our MSAT tracker with the recent correlation filter based trackers

that include CSK[16], KCF[11], DSST[7], SAMF[17], OCT_KCF[18],CN[19] on the OTB

dataset. All of these trackers are the use of circulant matrix or kernelized correlation filters. Fig

4 shows that mean OP and AUC score of overall, occlusion and scale variation for these track-

ers. Table 1 summarizes overall comprehensive evaluation for seven trackers. And Fig 5 com-

pare these trackers in challenging situations.

It is apparent from success plots of Fig 4 that our MSAT tracker has better performance

than the other correlation filters based trackers. We also observe from the result that our Multi-

part scheme brought high OP and AUC scores in the occlusion challenge, and our tracker is the

unique tracker that solves partial occlusion problem in Fig 5(B). Additionally, the results from

our experiment shows that trackers(MSAT, SAMF, DSST) explicitly used scale adaptive strategy

address the scale change problem have an advantage in the experiments.

The features are essentially significant to the visual object tracking tasks. CSK only employs

the raw pixel, whose rank is the lowest one among the correlation filter based trackers. CN

uses both raw pixel and color-naming as features, and realizes a lot of improvement upon

CSK. Trackers(MSAT, SAMF) with HoG and color-naming features outperform KCF which

only employs the HoG feature.

In the precision plots, the OCT_KCF[12] has the highest OP score. Because that the

OCT_KCF models the distribution of correlation response in a Bayesian optimization

Fig 3. Evaluation of η based on precision.

https://doi.org/10.1371/journal.pone.0231087.g003
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framework to alleviate the drifting problem, making the position in each frame more accurate.

In Fig 5(H), the performance of our tracker is inferior to DSST [7] which uses 33 different

scales for tracking, but this scale strategy of DSST brings larger cost of computational time.

Table 1 indicates that our tracker has the best overall comprehensive evaluation in seven

kernel correlation filter based trackers. Comparing to KCF [11], the MSAT tracker gets a

10.1% and 16% improvement for OP score and AUC score respectively. The result also dem-

onstrates that MSAT promotes the performance of the SAMF [11] which use the same features

and scale strategy as our tracker, especially in occlusion challenge. Our proposed MSAT

tracker runs at about 10 fps, which is still within real time range.

4.3. Comparison with the state-of-art trackers

In our next experiment, we have compared our approach and KCF [11] with 29 different state-

of-the-art trackers which reported in the benchmark experiment in [12] on the OTB dataset.

Fig 6 presents the overall scores of proposed tracker against the top nine performing state-

of-art trackers on the default 51 video sequence in Visual Tracker Benchmark [12]. Correlation

Filter Based Trackers (MSAT, KCF, CSK) have the performance with advantage against other

State-of-art Trackers. The trackers with HoG feature (MSAT, KCF) achieved an overwhelming

performance compared against SCM [4] and Struck [1] in both success and precision plots.

The top nine performing state-of-art trackers obtain mean AUC score of 0.446, compared to

0.596 for our MSAT tracker, which is a great improvement for the visual object trackers.

Table 2 shows the mean OP score on the Visual Tracker Benchmark dataset and its chal-

lenging sub-categories for the top ten tracking algorithms. Impressively, our MSAT tracker

obtains 7 the best and 2 the second best score in 9 sub-categories tasks. The promising result

suggests that our tracker with Multi-part and scale adaptive scheme is more effective in the

visual tracking challenge.

5. Conclusions

This paper present a very powerful tracker based on the kernelized correlation filter. It pro-

poses a multi-part tracking algorithm to improve the overall capability of correlation filter

based tracker, especially in partial-occlusion challenges. By using a reliability weight, we endue

multi-part tracking algorithm the ability to select the optimal tracker for different frame itself.

Moreover, this paper proposed a robust and efficient scale-adaptive tracker in tracking-by-

detection framework, which divided the target into four patches and computed the scale factor

by finding the maximum response position of each patch via kernelized correlation filter.

Fig 4. Success plots and precision plots over the default 51 video sequence in visual tracker benchmark [10] for seven kernel

correlation filter based trackers. (a)- (f) indicate the AUC and OP of overall, occlusion and scale variation, respectively.

https://doi.org/10.1371/journal.pone.0231087.g004

Table 1. Overall comprehensive evaluations of kernel correlation filter based trackers.

Tracker AUC Mean OP Speed(FPS)

MSAT(Proposed) 0.596 0.815 9.6

SAMF[17] 0.580 0.786 18

OCT_KCF[17] 0.574 0.834 49

DSST[7] 0.554 0.740 38

KCF[11] 0.514 0.740 219

CN[19] 0.458 0.642 146

CSK[16] 0.398 0.545 294

https://doi.org/10.1371/journal.pone.0231087.t001
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With this method, the scale computation was transformed into locating the centers of the

patches. In order to solve the problem of location ambiguity, a new Gaussian kernel functions

are introduced in this paper. Our proposed MSAT tracker runs at about 10 fps, which is still

within real time range. Extensive experiments have been implemented to demonstrate the

validity of our proposed tracker.

Author Contributions

Conceptualization: Mingqi Luo.

Fig 5. Comparison of our tracker with other kernel correlation filter based trackers[8,9,19,20] in challenging

situations. (a) couple; (b) coke; (c) freeman1; (d) football1; (e) jogging1; (f) lemming; (g) Sylvester; (h) dog1.
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Fig 6. Success plots (a) and precision plots (b) of proposed tracker against the top nine performing state-of-art tracker[1,2,3,4,5,11,21,17,7,6]

on the default 51 video sequence in Visual Tracker Benchmark[12].

https://doi.org/10.1371/journal.pone.0231087.g006

Table 2. Mean OP score on the visual tracker benchmark dataset and its challenging sub-categories for the top ten tracking algorithms[1,2,3,4,5,21,11,8,7,6]. Red

and blue label mean the best and second scores, respectively.

Tracker All IV SV OCC DEF MB FM IPR OPR BC

MSAT 0.815 0.731 0.769 0.885 0.835 0.649 0.694 0.757 0.806 0.729

KCF[11] 0.740 0.728 0.679 0.749 0.740 0.650 0.602 0.725 0.729 0.753

Struck[1] 0.656 0.558 0.639 0.564 0.521 0.551 0.604 0.617 0.597 0.585

SCM[4] 0.649 0.594 0.672 0.640 0.586 0.339 0.333 0.597 0.618 0.578

TLD[5] 0.608 0.537 0.606 0.563 0.512 0.518 0.551 0.584 0.596 0.428

VTD[3] 0.576 0.557 0.597 0.545 0.501 0.375 0.352 0.599 0.620 0.571

VTS[2] 0.575 0.573 0.582 0.534 0.487 0.375 0.353 0.579 0.604 0.578

CXT[8] 0.575 0.501 0.550 0.491 0.422 0.509 0.515 0.610 0.574 0.443

CSK[21] 0.545 0.481 0.503 0.500 0.476 0.342 0.381 0.547 0.540 0.585

ASLA[6] 0.532 0.517 0.552 0.512 0.401 0.352 0.386 0.526 0.519 0.503

https://doi.org/10.1371/journal.pone.0231087.t002
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